# Setup - Run only once per Kernel App
%conda install openjdk -y
# install PySpark
%pip install pyspark==3.4.0
# install spark-nlp
%pip install spark-nlp==5.1.3
# restart kernel
from IPython.core.display import HTML
HTML("<script>Jupyter.notebook.kernel.restart()</script>")
Collecting package metadata (current_repodata.json): done Solving environment: done ==> WARNING: A newer version of conda exists. <== current version: 23.3.1 latest version: 23.10.0 Please update conda by running $ conda update -n base -c defaults conda Or to minimize the number of packages updated during conda update use conda install conda=23.10.0 ## Package Plan ## environment location: /opt/conda added / updated specs: - openjdk The following packages will be downloaded: package | build ---------------------------|----------------- ca-certificates-2023.08.22 | h06a4308_0 123 KB certifi-2023.11.17 | py310h06a4308_0 158 KB openjdk-11.0.13 | h87a67e3_0 341.0 MB ------------------------------------------------------------ Total: 341.3 MB The following NEW packages will be INSTALLED: openjdk pkgs/main/linux-64::openjdk-11.0.13-h87a67e3_0 The following packages will be UPDATED: ca-certificates conda-forge::ca-certificates-2023.7.2~ --> pkgs/main::ca-certificates-2023.08.22-h06a4308_0 certifi conda-forge/noarch::certifi-2023.7.22~ --> pkgs/main/linux-64::certifi-2023.11.17-py310h06a4308_0 Downloading and Extracting Packages certifi-2023.11.17 | 158 KB | | 0% openjdk-11.0.13 | 341.0 MB | | 0% certifi-2023.11.17 | 158 KB | ##################################### | 100% ca-certificates-2023 | 123 KB | ##################################### | 100% openjdk-11.0.13 | 341.0 MB | | 0% openjdk-11.0.13 | 341.0 MB | 6 | 2% openjdk-11.0.13 | 341.0 MB | #5 | 4% openjdk-11.0.13 | 341.0 MB | ##2 | 6% openjdk-11.0.13 | 341.0 MB | #### | 11% openjdk-11.0.13 | 341.0 MB | #####6 | 15% openjdk-11.0.13 | 341.0 MB | #######1 | 19% openjdk-11.0.13 | 341.0 MB | ########3 | 23% openjdk-11.0.13 | 341.0 MB | ##########1 | 27% openjdk-11.0.13 | 341.0 MB | ###########4 | 31% openjdk-11.0.13 | 341.0 MB | ############6 | 34% openjdk-11.0.13 | 341.0 MB | ##############2 | 39% openjdk-11.0.13 | 341.0 MB | ################1 | 44% openjdk-11.0.13 | 341.0 MB | ##################1 | 49% openjdk-11.0.13 | 341.0 MB | ###################7 | 53% openjdk-11.0.13 | 341.0 MB | #####################6 | 59% openjdk-11.0.13 | 341.0 MB | #######################3 | 63% openjdk-11.0.13 | 341.0 MB | ######################### | 68% openjdk-11.0.13 | 341.0 MB | ##########################9 | 73% openjdk-11.0.13 | 341.0 MB | ############################7 | 78% openjdk-11.0.13 | 341.0 MB | ##############################6 | 83% openjdk-11.0.13 | 341.0 MB | ################################4 | 88% openjdk-11.0.13 | 341.0 MB | ##################################2 | 92% openjdk-11.0.13 | 341.0 MB | ####################################1 | 98% Preparing transaction: done Verifying transaction: done Executing transaction: done Note: you may need to restart the kernel to use updated packages. Collecting pyspark==3.4.0 Using cached pyspark-3.4.0-py2.py3-none-any.whl Collecting py4j==0.10.9.7 (from pyspark==3.4.0) Using cached py4j-0.10.9.7-py2.py3-none-any.whl (200 kB) Installing collected packages: py4j, pyspark Successfully installed py4j-0.10.9.7 pyspark-3.4.0 WARNING: Running pip as the 'root' user can result in broken permissions and conflicting behaviour with the system package manager. It is recommended to use a virtual environment instead: https://pip.pypa.io/warnings/venv [notice] A new release of pip is available: 23.2.1 -> 23.3.1 [notice] To update, run: pip install --upgrade pip Note: you may need to restart the kernel to use updated packages. Collecting spark-nlp==5.1.3 Obtaining dependency information for spark-nlp==5.1.3 from https://files.pythonhosted.org/packages/cd/7d/bc0eca4c9ec4c9c1d9b28c42c2f07942af70980a7d912d0aceebf8db32dd/spark_nlp-5.1.3-py2.py3-none-any.whl.metadata Using cached spark_nlp-5.1.3-py2.py3-none-any.whl.metadata (53 kB) Using cached spark_nlp-5.1.3-py2.py3-none-any.whl (537 kB) Installing collected packages: spark-nlp Successfully installed spark-nlp-5.1.3 WARNING: Running pip as the 'root' user can result in broken permissions and conflicting behaviour with the system package manager. It is recommended to use a virtual environment instead: https://pip.pypa.io/warnings/venv [notice] A new release of pip is available: 23.2.1 -> 23.3.1 [notice] To update, run: pip install --upgrade pip Note: you may need to restart the kernel to use updated packages.
import sagemaker
from pyspark.sql.functions import lower, regexp_replace, col, concat_ws
from pyspark.ml.feature import Tokenizer, StopWordsRemover
from sparknlp.annotator import *
from sparknlp.base import *
import sparknlp
from sparknlp.pretrained import PretrainedPipeline
from sparknlp.base import Finisher, DocumentAssembler
from sparknlp.annotator import (Tokenizer, Normalizer,
LemmatizerModel, StopWordsCleaner)
from pyspark.sql.functions import length
import pyspark.sql.functions as F
sagemaker.config INFO - Not applying SDK defaults from location: /etc/xdg/sagemaker/config.yaml sagemaker.config INFO - Not applying SDK defaults from location: /root/.config/sagemaker/config.yaml
# Import pyspark and build Spark session
from pyspark.sql import SparkSession
# Import pyspark and build Spark session
spark = SparkSession.builder \
.appName("Spark NLP")\
.master("local[*]")\
.config("spark.driver.memory","16G")\
.config("spark.executor.memory", "12g")\
.config("spark.executor.cores", "3")\
.config("spark.jars.packages", "com.johnsnowlabs.nlp:spark-nlp_2.12:5.1.3,org.apache.hadoop:hadoop-aws:3.2.2")\
.config(
"fs.s3a.aws.credentials.provider",
"com.amazonaws.auth.ContainerCredentialsProvider"
)\
.getOrCreate()
print(spark.version)
3.4.0
%%time
bucket = "project-group34"
session = sagemaker.Session()
output_prefix_data_submissions = "project/submissions/yyyy=*"
s3_path = f"s3a://{bucket}/{output_prefix_data_submissions}"
print(f"reading submissions from {s3_path}")
submissions = spark.read.parquet(s3_path, header=True)
sagemaker.config INFO - Not applying SDK defaults from location: /etc/xdg/sagemaker/config.yaml sagemaker.config INFO - Not applying SDK defaults from location: /root/.config/sagemaker/config.yaml reading submissions from s3a://project-group34/project/submissions/yyyy=*
23/11/30 19:37:01 WARN MetricsConfig: Cannot locate configuration: tried hadoop-metrics2-s3a-file-system.properties,hadoop-metrics2.properties
CPU times: user 162 ms, sys: 26.6 ms, total: 188 ms Wall time: 6.89 s
23/11/30 19:37:07 WARN package: Truncated the string representation of a plan since it was too large. This behavior can be adjusted by setting 'spark.sql.debug.maxToStringFields'.
# Assuming your DataFrame is named `df`
submissions = submissions.withColumn('post_length', length(submissions.title) + length(submissions.selftext))
from pyspark.sql import functions as F
submissions = submissions.withColumn('created_utc', F.to_timestamp('created_utc'))
# Extract time-based features
submissions = submissions.withColumn('hour_of_day', F.hour('created_utc'))
submissions = submissions.withColumn('day_of_week', F.dayofweek('created_utc')) # 1 (Sunday) to 7 (Saturday)
# Map each day of the week from numeric to string
submissions = submissions.withColumn('day_of_week_str', F.expr("""
CASE day_of_week
WHEN 1 THEN 'Sunday'
WHEN 2 THEN 'Monday'
WHEN 3 THEN 'Tuesday'
WHEN 4 THEN 'Wednesday'
WHEN 5 THEN 'Thursday'
WHEN 6 THEN 'Friday'
WHEN 7 THEN 'Saturday'
END
"""))
submissions = submissions.withColumn('day_of_month', F.dayofmonth('created_utc'))
submissions = submissions.withColumn('month', F.month('created_utc'))
submissions = submissions.withColumn('year', F.year('created_utc'))
submissions = submissions.withColumn('has_media', F.col('media').isNotNull())
submissions = submissions.drop(*["media"])
submissions = submissions.select('subreddit',
'title',
'selftext',
'score',
'num_comments',
'over_18',
'is_self',
'is_video',
'domain',
'post_length',
'hour_of_day',
'day_of_week',
'day_of_week_str',
'day_of_month',
'month',
'year',
'has_media')
# Combine 'title' and 'selftext' into a new column 'body'
submissions = submissions.withColumn("body", concat_ws(" ", col("title"), col("selftext")))
submissions = submissions.drop(*["title", "selftext"])
submissions.show(5)
[Stage 1:> (0 + 1) / 1]
+----------+-----+------------+-------+-------+--------+---------------+-----------+-----------+-----------+---------------+------------+-----+----+---------+--------------------+ | subreddit|score|num_comments|over_18|is_self|is_video| domain|post_length|hour_of_day|day_of_week|day_of_week_str|day_of_month|month|year|has_media| body| +----------+-----+------------+-------+-------+--------+---------------+-----------+-----------+-----------+---------------+------------+-----+----+---------+--------------------+ |television| 0| 9| false| true| false|self.television| 605| 22| 4| Wednesday| 27| 1|2021| false|Is there a websit...| | anime| 0| 3| false| false| false| i.redd.it| 50| 22| 4| Wednesday| 27| 1|2021| false|Does anyone know ...| |television| 4| 11| false| false| false| deadline.com| 86| 22| 4| Wednesday| 27| 1|2021| false|‘Doogie Kameāloha...| | movies| 0| 4| false| true| false| self.movies| 42| 22| 4| Wednesday| 27| 1|2021| false|4K movies on desk...| | anime| 0| 9| false| true| false| self.anime| 64| 22| 4| Wednesday| 27| 1|2021| false|Where can I buy a...| +----------+-----+------------+-------+-------+--------+---------------+-----------+-----------+-----------+---------------+------------+-----+----+---------+--------------------+ only showing top 5 rows
# Create a DocumentAssembler to convert text into documents
documentAssembler = DocumentAssembler() \
.setInputCol("body") \
.setOutputCol("document")
# Tokenize the document
tokenizer = Tokenizer() \
.setInputCols(['document']) \
.setOutputCol('token')
# Normalize and set case insensitive to be true
normalizer = Normalizer() \
.setInputCols(['token']) \
.setOutputCol('normalized') \
.setLowercase(True)
# Lemmatize
lemmatizer = LemmatizerModel.pretrained() \
.setInputCols(['normalized']) \
.setOutputCol('lemma')
# Define a list of punctuation symbols to remove
punctuation_symbols = ["!", "\"", "#", "$", "%", "&", "'", "(", ")", "*", "+", ",", "-", ".", "/", ":", ";", "<", "=", ">", "?", "@", "[", "\\", "]", "^", "_", "`", "{", "|", "}", "~"]
# Remove punctuation using StopWordsCleaner
punctuation_remover = StopWordsCleaner() \
.setInputCols(['lemma']) \
.setOutputCol('cleaned_lemma') \
.setStopWords(punctuation_symbols)
# Finisher converts tokens to human-readable output
finisher = Finisher() \
.setInputCols(['cleaned_lemma']) \
.setCleanAnnotations(False)
lemma_antbnc download started this may take some time. Approximate size to download 907.6 KB [OK!]
pipeline = Pipeline() \
.setStages([
documentAssembler,
tokenizer,
normalizer,
lemmatizer,
punctuation_remover,
finisher
])
pipelineModel = pipeline.fit(submissions)
result = pipelineModel.transform(submissions)
WARNING: An illegal reflective access operation has occurred WARNING: Illegal reflective access by org.apache.spark.util.SizeEstimator$ (file:/opt/conda/lib/python3.10/site-packages/pyspark/jars/spark-core_2.12-3.4.0.jar) to field java.util.regex.Pattern.pattern WARNING: Please consider reporting this to the maintainers of org.apache.spark.util.SizeEstimator$ WARNING: Use --illegal-access=warn to enable warnings of further illegal reflective access operations WARNING: All illegal access operations will be denied in a future release
result = result.withColumn("final_text", F.concat_ws(" ", "finished_cleaned_lemma"))
result.show(5)
+----------+-----+------------+-------+-------+--------+---------------+-----------+-----------+-----------+---------------+------------+-----+----+---------+--------------------+--------------------+--------------------+--------------------+--------------------+--------------------+----------------------+--------------------+ | subreddit|score|num_comments|over_18|is_self|is_video| domain|post_length|hour_of_day|day_of_week|day_of_week_str|day_of_month|month|year|has_media| body| document| token| normalized| lemma| cleaned_lemma|finished_cleaned_lemma| final_text| +----------+-----+------------+-------+-------+--------+---------------+-----------+-----------+-----------+---------------+------------+-----+----+---------+--------------------+--------------------+--------------------+--------------------+--------------------+--------------------+----------------------+--------------------+ |television| 0| 9| false| true| false|self.television| 605| 22| 4| Wednesday| 27| 1|2021| false|Is there a websit...|[{document, 0, 60...|[{token, 0, 1, Is...|[{token, 0, 1, is...|[{token, 0, 1, be...|[{token, 0, 1, be...| [be, there, a, we...|be there a websit...| | anime| 0| 3| false| false| false| i.redd.it| 50| 22| 4| Wednesday| 27| 1|2021| false|Does anyone know ...|[{document, 0, 50...|[{token, 0, 3, Do...|[{token, 0, 3, do...|[{token, 0, 3, do...|[{token, 0, 3, do...| [do, anyone, know...|do anyone know wh...| |television| 4| 11| false| false| false| deadline.com| 86| 22| 4| Wednesday| 27| 1|2021| false|‘Doogie Kameāloha...|[{document, 0, 86...|[{token, 0, 6, ‘D...|[{token, 0, 5, do...|[{token, 0, 5, do...|[{token, 0, 5, do...| [doogie, kameāloh...|doogie kameāloha ...| | movies| 0| 4| false| true| false| self.movies| 42| 22| 4| Wednesday| 27| 1|2021| false|4K movies on desk...|[{document, 0, 42...|[{token, 0, 1, 4K...|[{token, 0, 0, k,...|[{token, 0, 0, k,...|[{token, 0, 0, k,...| [k, movie, on, de...|k movie on deskto...| | anime| 0| 9| false| true| false| self.anime| 64| 22| 4| Wednesday| 27| 1|2021| false|Where can I buy a...|[{document, 0, 64...|[{token, 0, 4, Wh...|[{token, 0, 4, wh...|[{token, 0, 4, wh...|[{token, 0, 4, wh...| [where, can, i, b...|where can i buy a...| +----------+-----+------------+-------+-------+--------+---------------+-----------+-----------+-----------+---------------+------------+-----+----+---------+--------------------+--------------------+--------------------+--------------------+--------------------+--------------------+----------------------+--------------------+ only showing top 5 rows
result.write.parquet("s3a://project-group34/project/submissions/sentiment_analysis/")
%%writefile ./code/ml_sentiment_submissions.py
import os
import logging
import argparse
# Import pyspark and build Spark session
from pyspark.sql.functions import *
from pyspark.sql.types import (
DoubleType,
IntegerType,
StringType,
StructField,
StructType,
)
from pyspark.sql import SparkSession
from pyspark.sql.functions import col
from pyspark.sql.functions import udf
import pyspark.sql.functions as F
from pyspark.sql.types import ArrayType
import re
from pyspark.sql.functions import explode, count
import sagemaker
from pyspark.sql.functions import lower, regexp_replace, col, concat_ws
from pyspark.ml.feature import Tokenizer, StopWordsRemover
from sparknlp.annotator import *
from sparknlp.base import *
import sparknlp
from sparknlp.pretrained import PretrainedPipeline
from pyspark.ml import Pipeline
from pyspark.sql.functions import desc
import nltk
nltk.download('stopwords')
eng_stopwords = nltk.corpus.stopwords.words('english')
logging.basicConfig(format='%(asctime)s,%(levelname)s,%(module)s,%(filename)s,%(lineno)d,%(message)s', level=logging.DEBUG)
logger = logging.getLogger()
logger.setLevel(logging.DEBUG)
logger.addHandler(logging.StreamHandler(sys.stdout))
def main():
parser = argparse.ArgumentParser(description="app inputs and outputs")
parser.add_argument("--s3_dataset_path", type=str, help="Path of dataset in S3")
args = parser.parse_args()
spark = SparkSession.builder \
.appName("Spark NLP")\
.config("spark.driver.memory","16G")\
.config("spark.driver.maxResultSize", "0") \
.config("spark.kryoserializer.buffer.max", "2000M")\
.config("spark.jars.packages", "com.johnsnowlabs.nlp:spark-nlp_2.12:5.1.3")\
.getOrCreate()
logger.info(f"Spark version: {spark.version}")
logger.info(f"sparknlp version: {sparknlp.version()}")
# This is needed to save RDDs which is the only way to write nested Dataframes into CSV format
sc = spark.sparkContext
sc._jsc.hadoopConfiguration().set(
"mapred.output.committer.class", "org.apache.hadoop.mapred.FileOutputCommitter"
)
# Downloading the data from S3 into a Dataframe
logger.info(f"going to read {args.s3_dataset_path}")
df = spark.read.parquet(args.s3_dataset_path, header=True)
documentAssembler = DocumentAssembler()\
.setInputCol("final_text")\
.setOutputCol("document")
# Paths to the models
# tfhub_use_path = "../../../cache_pretrained/tfhub_use_en_2.4.0_2.4_1587136330099/"
# sentimentdl_use_twitter_path = "../../../cache_pretrained/sentimentdl_use_twitter_en_2.7.1_2.4_1610983524713/"
# sentiment_emotion = "../../../cache_pretrained/cache_pretrained/classifierdl_use_emotion_en_2.7.1_2.4_1610190563302/"
# Load models from local path
use = UniversalSentenceEncoder.pretrained(name="tfhub_use", lang="en")\
.setInputCols(["document"])\
.setOutputCol("sentence_embeddings")
sentimentdl = SentimentDLModel.pretrained(name="sentimentdl_use_twitter", lang="en")\
.setInputCols(["sentence_embeddings"])\
.setOutputCol("sentiment")
# sentimentdl1 = ClassifierDLModel.load(sentiment_emotion)\
# .setInputCols(["sentence_embeddings"])\
# .setOutputCol("sentiment_emotion")
nlpPipeline = Pipeline(
stages = [
documentAssembler,
use,
sentimentdl
#sentimentdl1
])
# Apply the pipeline to your DataFrame
model = nlpPipeline.fit(df)
result = model.transform(df)
result.write.parquet("s3a://project-group34/project/submissions/sentiment_extracted/", mode="overwrite")
logger.info(f"all done...")
if __name__ == "__main__":
main()
Overwriting ./code/ml_sentiment_submissions.py
%%time
import boto3
import sagemaker
from sagemaker.spark.processing import PySparkProcessor
account_id = boto3.client('sts').get_caller_identity()['Account']
CPU times: user 14.7 ms, sys: 0 ns, total: 14.7 ms Wall time: 33.6 ms
account_id
'655678691473'
%%time
import time
import sagemaker
from sagemaker.spark.processing import PySparkProcessor
# Setup the PySpark processor to run the job. Note the instance type and instance count parameters. SageMaker will create these many instances of this type for the spark job.
role = sagemaker.get_execution_role()
spark_processor = PySparkProcessor(
base_job_name="sm-spark-project",
image_uri=f"{account_id}.dkr.ecr.us-east-1.amazonaws.com/sagemaker-spark:latest",
framework_version="3.3",
role=role,
instance_count=8,
instance_type="ml.m5.xlarge",
max_runtime_in_seconds=7200,
)
# # S3 URI of the initialization script
# s3_uri_init_script = f's3://{bucket}/{script_key}'
# s3 paths
session = sagemaker.Session()
output_prefix_logs = f"spark_logs"
configuration = [
{
"Classification": "spark-defaults",
"Properties": {"spark.executor.memory": "12g", "spark.executor.cores": "4"},
}
]
sagemaker.config INFO - Not applying SDK defaults from location: /etc/xdg/sagemaker/config.yaml sagemaker.config INFO - Not applying SDK defaults from location: /root/.config/sagemaker/config.yaml sagemaker.config INFO - Not applying SDK defaults from location: /etc/xdg/sagemaker/config.yaml sagemaker.config INFO - Not applying SDK defaults from location: /root/.config/sagemaker/config.yaml sagemaker.config INFO - Not applying SDK defaults from location: /etc/xdg/sagemaker/config.yaml sagemaker.config INFO - Not applying SDK defaults from location: /root/.config/sagemaker/config.yaml CPU times: user 203 ms, sys: 0 ns, total: 203 ms Wall time: 244 ms
%%time
bucket = "project-group34"
output_prefix_data_comments = "project/submissions/sentiment_analysis/"
s3_path = f"s3a://{bucket}/{output_prefix_data_comments}"
# run the job now, the arguments array is provided as command line to the Python script (Spark code in this case).
spark_processor.run(
submit_app="./code/ml_sentiment_submissions.py",
submit_jars=[f"s3://{bucket}/spark-nlp-assembly-5.1.3.jar"],
arguments=[
"--s3_dataset_path",
s3_path,
],
spark_event_logs_s3_uri="s3://{}/{}/spark_event_logs".format(bucket, output_prefix_logs),
logs=False,
configuration=configuration
)
# give some time for resources from this iterations to get cleaned up
# if we start the job immediately we could get insufficient resources error
time.sleep(60)
INFO:sagemaker:Creating processing-job with name sm-spark-project-2023-11-29-01-51-36-228
.............................................................................................................................................................!CPU times: user 620 ms, sys: 48.3 ms, total: 669 ms Wall time: 14min 16s
import sagemaker
from pyspark.sql.functions import lower, regexp_replace, col, concat_ws
from pyspark.ml.feature import Tokenizer, StopWordsRemover
from sparknlp.annotator import *
from sparknlp.base import *
import sparknlp
from sparknlp.pretrained import PretrainedPipeline
from sparknlp.base import Finisher, DocumentAssembler
from sparknlp.annotator import (Tokenizer, Normalizer,
LemmatizerModel, StopWordsCleaner)
import pyspark.sql.functions as F
# Import pyspark and build Spark session
from pyspark.sql import SparkSession
# Import pyspark and build Spark session
spark = SparkSession.builder \
.appName("Spark NLP")\
.master("local[*]")\
.config("spark.driver.memory","16G")\
.config("spark.executor.memory", "12g")\
.config("spark.executor.cores", "3")\
.config("spark.jars.packages", "com.johnsnowlabs.nlp:spark-nlp_2.12:5.1.3,org.apache.hadoop:hadoop-aws:3.2.2")\
.config(
"fs.s3a.aws.credentials.provider",
"com.amazonaws.auth.ContainerCredentialsProvider"
)\
.getOrCreate()
print(spark.version)
3.4.0
result = spark.read.parquet("s3a://project-group34/project/submissions/sentiment_extracted/")
result.show(5)
[Stage 7:> (0 + 1) / 1]
+---------+-----+------------+-------+-------+--------+------------------+-----------+-----------+-----------+---------------+------------+-----+----+---------+--------------------+--------------------+--------------------+--------------------+--------------------+--------------------+----------------------+--------------------+--------------------+--------------------+ |subreddit|score|num_comments|over_18|is_self|is_video| domain|post_length|hour_of_day|day_of_week|day_of_week_str|day_of_month|month|year|has_media| body| document| token| normalized| lemma| cleaned_lemma|finished_cleaned_lemma| final_text| sentence_embeddings| sentiment| +---------+-----+------------+-------+-------+--------+------------------+-----------+-----------+-----------+---------------+------------+-----+----+---------+--------------------+--------------------+--------------------+--------------------+--------------------+--------------------+----------------------+--------------------+--------------------+--------------------+ | anime| 0| 2| false| true| false| self.anime| 62| 3| 4| Wednesday| 7| 12|2022| false|Rumor: ONE PUNCH ...|[{document, 0, 56...|[{token, 0, 4, Ru...|[{token, 0, 4, ru...|[{token, 0, 4, ru...|[{token, 0, 4, ru...| [rumor, one, punc...|rumor one punch m...|[{sentence_embedd...|[{category, 0, 56...| | anime| 2| 2| false| false| false|mobile.twitter.com| 53| 3| 4| Wednesday| 7| 12|2022| true|RUMOR: ONE PUNCH ...|[{document, 0, 49...|[{token, 0, 4, RU...|[{token, 0, 4, ru...|[{token, 0, 4, ru...|[{token, 0, 4, ru...| [rumor, one, punc...|rumor one punch m...|[{sentence_embedd...|[{category, 0, 49...| | anime| 1| 1| false| true| false| | 46| 3| 4| Wednesday| 7| 12|2022| false|Can mappa become ...|[{document, 0, 39...|[{token, 0, 2, Ca...|[{token, 0, 2, ca...|[{token, 0, 2, ca...|[{token, 0, 2, ca...| [can, mappa, beco...|can mappa become ...|[{sentence_embedd...|[{category, 0, 39...| | anime| 1| 1| false| true| false| self.anime| 47| 3| 4| Wednesday| 7| 12|2022| false|Can mappa become ...|[{document, 0, 39...|[{token, 0, 2, Ca...|[{token, 0, 2, ca...|[{token, 0, 2, ca...|[{token, 0, 2, ca...| [can, mappa, beco...|can mappa become ...|[{sentence_embedd...|[{category, 0, 39...| | movies| 1| 1| false| true| false| self.movies| 58| 3| 4| Wednesday| 7| 12|2022| false|Which actors/actr...|[{document, 0, 49...|[{token, 0, 4, Wh...|[{token, 0, 4, wh...|[{token, 0, 4, wh...|[{token, 0, 4, wh...| [which, actorsact...|which actorsactre...|[{sentence_embedd...|[{category, 0, 49...| +---------+-----+------------+-------+-------+--------+------------------+-----------+-----------+-----------+---------------+------------+-----+----+---------+--------------------+--------------------+--------------------+--------------------+--------------------+--------------------+----------------------+--------------------+--------------------+--------------------+ only showing top 5 rows
result.select("sentiment").show(5, truncate=False)
+--------------------------------------------------------------------------------------------------+ |sentiment | +--------------------------------------------------------------------------------------------------+ |[{category, 0, 56, negative, {sentence -> 0, positive -> 0.09468776, negative -> 0.90531224}, []}]| |[{category, 0, 49, positive, {sentence -> 0, positive -> 0.890747, negative -> 0.10925303}, []}] | |[{category, 0, 39, negative, {sentence -> 0, positive -> 4.9209936E-21, negative -> 1.0}, []}] | |[{category, 0, 39, negative, {sentence -> 0, positive -> 4.9209936E-21, negative -> 1.0}, []}] | |[{category, 0, 49, negative, {sentence -> 0, positive -> 0.06990129, negative -> 0.9300988}, []}] | +--------------------------------------------------------------------------------------------------+ only showing top 5 rows
result1 = result.select(
F.expr("sentiment[0].metadata['positive']").cast("float").alias("positive_score"),
col("subreddit"),
col("final_text").alias("text"),
col("score"),
col("num_comments"),
col("over_18"),
col("is_self"),
col("is_video"),
col("post_length"),
col("hour_of_day"),
col("day_of_week"),
col("day_of_month"),
col("month"),
col("year"),
col("has_media")
)
result1.show(5)
[Stage 16:> (0 + 1) / 1]
+--------------+---------+--------------------+-----+------------+-------+-------+--------+-----------+-----------+-----------+------------+-----+----+---------+ |positive_score|subreddit| text|score|num_comments|over_18|is_self|is_video|post_length|hour_of_day|day_of_week|day_of_month|month|year|has_media| +--------------+---------+--------------------+-----+------------+-------+-------+--------+-----------+-----------+-----------+------------+-----+----+---------+ | 0.09468776| anime|rumor one punch m...| 0| 2| false| true| false| 62| 3| 4| 7| 12|2022| false| | 0.890747| anime|rumor one punch m...| 2| 2| false| false| false| 53| 3| 4| 7| 12|2022| true| | 4.9209936E-21| anime|can mappa become ...| 1| 1| false| true| false| 46| 3| 4| 7| 12|2022| false| | 4.9209936E-21| anime|can mappa become ...| 1| 1| false| true| false| 47| 3| 4| 7| 12|2022| false| | 0.06990129| movies|which actorsactre...| 1| 1| false| true| false| 58| 3| 4| 7| 12|2022| false| +--------------+---------+--------------------+-----+------------+-------+-------+--------+-----------+-----------+-----------+------------+-----+----+---------+ only showing top 5 rows
result1.write.parquet("s3a://project-group34/project/submissions/sentiment_submissions/", mode="overwrite")
%%writefile ./code/ml_emotion_submissions.py
import os
import logging
import argparse
# Import pyspark and build Spark session
from pyspark.sql.functions import *
from pyspark.sql.types import (
DoubleType,
IntegerType,
StringType,
StructField,
StructType,
)
from pyspark.sql import SparkSession
from pyspark.sql.functions import col
from pyspark.sql.functions import udf
import pyspark.sql.functions as F
from pyspark.sql.types import ArrayType
import re
from pyspark.sql.functions import explode, count
import sagemaker
from pyspark.sql.functions import lower, regexp_replace, col, concat_ws
from pyspark.ml.feature import Tokenizer, StopWordsRemover
from sparknlp.annotator import *
from sparknlp.base import *
import sparknlp
from sparknlp.pretrained import PretrainedPipeline
from pyspark.ml import Pipeline
from pyspark.sql.functions import desc
import nltk
nltk.download('stopwords')
eng_stopwords = nltk.corpus.stopwords.words('english')
logging.basicConfig(format='%(asctime)s,%(levelname)s,%(module)s,%(filename)s,%(lineno)d,%(message)s', level=logging.DEBUG)
logger = logging.getLogger()
logger.setLevel(logging.DEBUG)
logger.addHandler(logging.StreamHandler(sys.stdout))
def main():
parser = argparse.ArgumentParser(description="app inputs and outputs")
parser.add_argument("--s3_dataset_path", type=str, help="Path of dataset in S3")
args = parser.parse_args()
spark = SparkSession.builder \
.appName("Spark NLP")\
.config("spark.driver.memory","16G")\
.config("spark.driver.maxResultSize", "0") \
.config("spark.kryoserializer.buffer.max", "2000M")\
.config("spark.jars.packages", "com.johnsnowlabs.nlp:spark-nlp_2.12:5.1.3")\
.getOrCreate()
logger.info(f"Spark version: {spark.version}")
logger.info(f"sparknlp version: {sparknlp.version()}")
# This is needed to save RDDs which is the only way to write nested Dataframes into CSV format
sc = spark.sparkContext
sc._jsc.hadoopConfiguration().set(
"mapred.output.committer.class", "org.apache.hadoop.mapred.FileOutputCommitter"
)
# Downloading the data from S3 into a Dataframe
logger.info(f"going to read {args.s3_dataset_path}")
df = spark.read.parquet(args.s3_dataset_path, header=True)
documentAssembler = DocumentAssembler()\
.setInputCol("text")\
.setOutputCol("document")
# Paths to the models
# tfhub_use_path = "../../../cache_pretrained/tfhub_use_en_2.4.0_2.4_1587136330099/"
# sentimentdl_use_twitter_path = "../../../cache_pretrained/sentimentdl_use_twitter_en_2.7.1_2.4_1610983524713/"
# sentiment_emotion = "../../../cache_pretrained/cache_pretrained/classifierdl_use_emotion_en_2.7.1_2.4_1610190563302/"
# Load models from local path
use = UniversalSentenceEncoder.pretrained(name="tfhub_use", lang="en")\
.setInputCols(["document"])\
.setOutputCol("sentence_embeddings")
# sentimentdl = SentimentDLModel.pretrained(name="sentimentdl_use_twitter", lang="en")\
# .setInputCols(["sentence_embeddings"])\
# .setOutputCol("sentiment")
sentimentdl1 = ClassifierDLModel.pretrained(name="classifierdl_use_emotion")\
.setInputCols(["sentence_embeddings"])\
.setOutputCol("sentiment_emotion")
nlpPipeline = Pipeline(
stages = [
documentAssembler,
use,
sentimentdl1
#sentimentdl
])
# Apply the pipeline to your DataFrame
model = nlpPipeline.fit(df)
result = model.transform(df)
result.write.parquet("s3a://project-group34/project/submissions/emotion_extracted/", mode="overwrite")
logger.info(f"all done...")
if __name__ == "__main__":
main()
Overwriting ./code/ml_emotion_submissions.py
%%time
import boto3
import sagemaker
from sagemaker.spark.processing import PySparkProcessor
account_id = boto3.client('sts').get_caller_identity()['Account']
CPU times: user 16.7 ms, sys: 618 µs, total: 17.3 ms Wall time: 35 ms
account_id
'655678691473'
%%time
import time
import sagemaker
from sagemaker.spark.processing import PySparkProcessor
# Setup the PySpark processor to run the job. Note the instance type and instance count parameters. SageMaker will create these many instances of this type for the spark job.
role = sagemaker.get_execution_role()
spark_processor = PySparkProcessor(
base_job_name="sm-spark-project",
image_uri=f"{account_id}.dkr.ecr.us-east-1.amazonaws.com/sagemaker-spark:latest",
framework_version="3.3",
role=role,
instance_count=8,
instance_type="ml.m5.xlarge",
max_runtime_in_seconds=7200,
)
# # S3 URI of the initialization script
# s3_uri_init_script = f's3://{bucket}/{script_key}'
# s3 paths
session = sagemaker.Session()
output_prefix_logs = f"spark_logs"
configuration = [
{
"Classification": "spark-defaults",
"Properties": {"spark.executor.memory": "12g", "spark.executor.cores": "4"},
}
]
sagemaker.config INFO - Not applying SDK defaults from location: /etc/xdg/sagemaker/config.yaml sagemaker.config INFO - Not applying SDK defaults from location: /root/.config/sagemaker/config.yaml sagemaker.config INFO - Not applying SDK defaults from location: /etc/xdg/sagemaker/config.yaml sagemaker.config INFO - Not applying SDK defaults from location: /root/.config/sagemaker/config.yaml sagemaker.config INFO - Not applying SDK defaults from location: /etc/xdg/sagemaker/config.yaml sagemaker.config INFO - Not applying SDK defaults from location: /root/.config/sagemaker/config.yaml CPU times: user 74.2 ms, sys: 3.44 ms, total: 77.7 ms Wall time: 124 ms
%%time
bucket = "project-group34"
output_prefix_data_comments = "project/submissions/sentiment_submissions/"
s3_path = f"s3a://{bucket}/{output_prefix_data_comments}"
# run the job now, the arguments array is provided as command line to the Python script (Spark code in this case).
spark_processor.run(
submit_app="./code/ml_emotion_submissions.py",
submit_jars=[f"s3://{bucket}/spark-nlp-assembly-5.1.3.jar"],
arguments=[
"--s3_dataset_path",
s3_path,
],
spark_event_logs_s3_uri="s3://{}/{}/spark_event_logs".format(bucket, output_prefix_logs),
logs=False,
configuration=configuration
)
# give some time for resources from this iterations to get cleaned up
# if we start the job immediately we could get insufficient resources error
time.sleep(60)
INFO:sagemaker:Creating processing-job with name sm-spark-project-2023-11-29-03-06-29-254
......................................................................................................................................................!CPU times: user 681 ms, sys: 60.6 ms, total: 742 ms Wall time: 13min 41s
import sagemaker
from pyspark.sql.functions import lower, regexp_replace, col, concat_ws
from pyspark.ml.feature import Tokenizer, StopWordsRemover
from sparknlp.annotator import *
from sparknlp.base import *
import sparknlp
from sparknlp.pretrained import PretrainedPipeline
from sparknlp.base import Finisher, DocumentAssembler
from sparknlp.annotator import (Tokenizer, Normalizer,
LemmatizerModel, StopWordsCleaner)
import pyspark.sql.functions as F
sagemaker.config INFO - Not applying SDK defaults from location: /etc/xdg/sagemaker/config.yaml sagemaker.config INFO - Not applying SDK defaults from location: /root/.config/sagemaker/config.yaml
# Import pyspark and build Spark session
from pyspark.sql import SparkSession
# Import pyspark and build Spark session
spark = SparkSession.builder \
.appName("Spark NLP")\
.master("local[*]")\
.config("spark.driver.memory","16G")\
.config("spark.executor.memory", "12g")\
.config("spark.executor.cores", "3")\
.config("spark.jars.packages", "com.johnsnowlabs.nlp:spark-nlp_2.12:5.1.3,org.apache.hadoop:hadoop-aws:3.2.2")\
.config(
"fs.s3a.aws.credentials.provider",
"com.amazonaws.auth.ContainerCredentialsProvider"
)\
.getOrCreate()
print(spark.version)
3.4.0
result = spark.read.parquet("s3a://project-group34/project/submissions/emotion_extracted/")
23/11/29 03:21:34 WARN MetricsConfig: Cannot locate configuration: tried hadoop-metrics2-s3a-file-system.properties,hadoop-metrics2.properties
result.show(5)
[Stage 1:> (0 + 1) / 1]
+--------------+----------+--------------------+-----+------------+-------+-------+--------+-----------+-----------+-----------+------------+-----+----+---------+--------------------+--------------------+--------------------+ |positive_score| subreddit| text|score|num_comments|over_18|is_self|is_video|post_length|hour_of_day|day_of_week|day_of_month|month|year|has_media| document| sentence_embeddings| sentiment_emotion| +--------------+----------+--------------------+-----+------------+-------+-------+--------+-----------+-----------+-----------+------------+-----+----+---------+--------------------+--------------------+--------------------+ | 1.0| movies|sidney poitier a ...|17101| 501| false| false| false| 53| 16| 7| 20| 2|2021| false|[{document, 0, 48...|[{sentence_embedd...|[{category, 0, 48...| | 0.5907684| anime|help i get into a...| 0| 13| false| true| false| 63| 16| 7| 20| 2|2021| false|[{document, 0, 58...|[{sentence_embedd...|[{category, 0, 58...| | 0.9160415|television|wwe elimination c...| 0| 1| false| false| false| 120| 16| 7| 20| 2|2021| false|[{document, 0, 10...|[{sentence_embedd...|[{category, 0, 10...| | 0.6181543| movies|chadwick bossman ...| 2| 0| false| false| false| 48| 16| 7| 20| 2|2021| true|[{document, 0, 43...|[{sentence_embedd...|[{category, 0, 43...| | 0.20858091| movies|crank and be the ...| 829| 197| false| true| false| 1280| 16| 7| 20| 2|2021| false|[{document, 0, 11...|[{sentence_embedd...|[{category, 0, 11...| +--------------+----------+--------------------+-----+------------+-------+-------+--------+-----------+-----------+-----------+------------+-----+----+---------+--------------------+--------------------+--------------------+ only showing top 5 rows
result.printSchema()
root |-- positive_score: float (nullable = true) |-- subreddit: string (nullable = true) |-- text: string (nullable = true) |-- score: long (nullable = true) |-- num_comments: long (nullable = true) |-- over_18: boolean (nullable = true) |-- is_self: boolean (nullable = true) |-- is_video: boolean (nullable = true) |-- post_length: integer (nullable = true) |-- hour_of_day: integer (nullable = true) |-- day_of_week: integer (nullable = true) |-- day_of_month: integer (nullable = true) |-- month: integer (nullable = true) |-- year: integer (nullable = true) |-- has_media: boolean (nullable = true) |-- document: array (nullable = true) | |-- element: struct (containsNull = true) | | |-- annotatorType: string (nullable = true) | | |-- begin: integer (nullable = true) | | |-- end: integer (nullable = true) | | |-- result: string (nullable = true) | | |-- metadata: map (nullable = true) | | | |-- key: string | | | |-- value: string (valueContainsNull = true) | | |-- embeddings: array (nullable = true) | | | |-- element: float (containsNull = true) |-- sentence_embeddings: array (nullable = true) | |-- element: struct (containsNull = true) | | |-- annotatorType: string (nullable = true) | | |-- begin: integer (nullable = true) | | |-- end: integer (nullable = true) | | |-- result: string (nullable = true) | | |-- metadata: map (nullable = true) | | | |-- key: string | | | |-- value: string (valueContainsNull = true) | | |-- embeddings: array (nullable = true) | | | |-- element: float (containsNull = true) |-- sentiment_emotion: array (nullable = true) | |-- element: struct (containsNull = true) | | |-- annotatorType: string (nullable = true) | | |-- begin: integer (nullable = true) | | |-- end: integer (nullable = true) | | |-- result: string (nullable = true) | | |-- metadata: map (nullable = true) | | | |-- key: string | | | |-- value: string (valueContainsNull = true) | | |-- embeddings: array (nullable = true) | | | |-- element: float (containsNull = true)
result.select("sentiment_emotion").show(5, truncate=False)
+---------------------------------------------------------------------------------------------------------------------------------------------+ |sentiment_emotion | +---------------------------------------------------------------------------------------------------------------------------------------------+ |[{category, 0, 48, surprise, {surprise -> 0.94696283, joy -> 0.0021084917, fear -> 0.048108246, sadness -> 0.0028204152, sentence -> 0}, []}]| |[{category, 0, 58, sadness, {surprise -> 9.781701E-8, joy -> 1.0658228E-8, fear -> 5.8513685E-8, sadness -> 0.9999999, sentence -> 0}, []}] | |[{category, 0, 109, fear, {surprise -> 1.6646996E-9, joy -> 2.359295E-10, fear -> 1.0, sadness -> 4.3215704E-12, sentence -> 0}, []}] | |[{category, 0, 43, joy, {surprise -> 0.005493851, joy -> 0.95643336, fear -> 0.0028001422, sadness -> 0.035272676, sentence -> 0}, []}] | |[{category, 0, 1175, fear, {surprise -> 1.0530039E-8, joy -> 6.5194463E-9, fear -> 1.0, sadness -> 8.951719E-10, sentence -> 0}, []}] | +---------------------------------------------------------------------------------------------------------------------------------------------+ only showing top 5 rows
result1 = result.select(
F.expr("sentiment_emotion[0].result").alias("emotion"),
col("positive_score").alias("sentiment_score"),
col("subreddit"),
col("text"),
col("score"),
col("num_comments"),
col("over_18"),
col("is_self"),
col("is_video"),
col("post_length"),
col("hour_of_day"),
col("day_of_week"),
col("day_of_month"),
col("month"),
col("year"),
col("has_media")
)
result1.show(5)
[Stage 4:> (0 + 1) / 1]
+--------+---------------+----------+--------------------+-----+------------+-------+-------+--------+-----------+-----------+-----------+------------+-----+----+---------+ | emotion|sentiment_score| subreddit| text|score|num_comments|over_18|is_self|is_video|post_length|hour_of_day|day_of_week|day_of_month|month|year|has_media| +--------+---------------+----------+--------------------+-----+------------+-------+-------+--------+-----------+-----------+-----------+------------+-----+----+---------+ |surprise| 1.0| movies|sidney poitier a ...|17101| 501| false| false| false| 53| 16| 7| 20| 2|2021| false| | sadness| 0.5907684| anime|help i get into a...| 0| 13| false| true| false| 63| 16| 7| 20| 2|2021| false| | fear| 0.9160415|television|wwe elimination c...| 0| 1| false| false| false| 120| 16| 7| 20| 2|2021| false| | joy| 0.6181543| movies|chadwick bossman ...| 2| 0| false| false| false| 48| 16| 7| 20| 2|2021| true| | fear| 0.20858091| movies|crank and be the ...| 829| 197| false| true| false| 1280| 16| 7| 20| 2|2021| false| +--------+---------------+----------+--------------------+-----+------------+-------+-------+--------+-----------+-----------+-----------+------------+-----+----+---------+ only showing top 5 rows
result1.write.parquet("s3a://project-group34/project/submissions/sentiment_emotion_submissions/", mode="overwrite")
# Import pyspark and build Spark session
from pyspark.sql import SparkSession
# Import pyspark and build Spark session
spark = SparkSession.builder \
.appName("Spark NLP")\
.master("local[*]")\
.config("spark.driver.memory","16G")\
.config("spark.executor.memory", "12g")\
.config("spark.executor.cores", "3")\
.config("spark.jars.packages", "com.johnsnowlabs.nlp:spark-nlp_2.12:5.1.3,org.apache.hadoop:hadoop-aws:3.2.2")\
.config(
"fs.s3a.aws.credentials.provider",
"com.amazonaws.auth.ContainerCredentialsProvider"
)\
.getOrCreate()
print(spark.version)
3.4.0
import sagemaker
from pyspark.sql.functions import lower, regexp_replace, col, concat_ws
from pyspark.ml.feature import Tokenizer, StopWordsRemover
from sparknlp.annotator import *
from sparknlp.base import *
import sparknlp
from sparknlp.pretrained import PretrainedPipeline
from sparknlp.base import Finisher, DocumentAssembler
from pyspark.sql.functions import length
df = spark.read.parquet("s3a://project-group34/project/submissions/sentiment_emotion_submissions/")
from pyspark.ml.feature import Tokenizer, StopWordsRemover, HashingTF, IDF
# Tokenize text
tokenizer = Tokenizer(inputCol="text", outputCol="words")
tokenized_df = tokenizer.transform(df)
# Remove stop words
remover = StopWordsRemover(inputCol="words", outputCol="filtered_words")
df_no_stopwords = remover.transform(tokenized_df)
# Vectorize words
hashingTF = HashingTF(inputCol="filtered_words", outputCol="rawFeatures")
featurizedData = hashingTF.transform(df_no_stopwords)
# Optionally, use IDF to rescale the feature vectors
idf = IDF(inputCol="rawFeatures", outputCol="features")
rescaledData = idf.fit(featurizedData).transform(featurizedData)
from pyspark.sql.functions import col, count, when
missing_vals = rescaledData.select([count(when(col(c).isNull(), c)).alias(c) for c in rescaledData.columns])
missing_vals.show()
23/11/30 19:39:12 WARN DAGScheduler: Broadcasting large task binary with size 4.1 MiB [Stage 4:============================================> (3 + 1) / 4]
+-------+---------------+---------+----+-----+------------+-------+-------+--------+-----------+-----------+-----------+------------+-----+----+---------+-----+--------------+-----------+--------+ |emotion|sentiment_score|subreddit|text|score|num_comments|over_18|is_self|is_video|post_length|hour_of_day|day_of_week|day_of_month|month|year|has_media|words|filtered_words|rawFeatures|features| +-------+---------------+---------+----+-----+------------+-------+-------+--------+-----------+-----------+-----------+------------+-----+----+---------+-----+--------------+-----------+--------+ | 734| 734| 0| 0| 0| 0| 0| 0| 0| 0| 0| 0| 0| 0| 0| 0| 0| 0| 0| 0| +-------+---------------+---------+----+-----+------------+-------+-------+--------+-----------+-----------+-----------+------------+-----+----+---------+-----+--------------+-----------+--------+
rescaledData = rescaledData.na.drop(subset=["emotion"])
rescaledData = rescaledData.na.drop(subset=["sentiment_score"])
from pyspark.sql.functions import col
rescaledData = rescaledData.withColumn("over_18", col("over_18").cast("string"))
rescaledData = rescaledData.withColumn("is_self", col("is_self").cast("string"))
rescaledData = rescaledData.withColumn("is_video", col("is_video").cast("string"))
rescaledData = rescaledData.withColumn("has_media", col("has_media").cast("string"))
rescaledData.write.parquet("s3a://project-group34/project/submissions/ml_model2_cleaned/",mode="overwrite")
23/11/30 19:39:46 WARN DAGScheduler: Broadcasting large task binary with size 4.3 MiB
#preprocessing job
%%writefile ./code/preprocess_ml2.py
import sys
import os
import logging
import argparse
# Import pyspark and build Spark session
from pyspark.sql import SparkSession
from pyspark.ml.feature import OneHotEncoder, StringIndexer, IndexToString, VectorAssembler
from pyspark.ml.classification import RandomForestClassifier, MultilayerPerceptronClassifier, GBTClassifier
from pyspark.ml.evaluation import BinaryClassificationEvaluator, MulticlassClassificationEvaluator
from pyspark.ml.tuning import ParamGridBuilder, CrossValidator
from pyspark.ml import Pipeline, Model
import sagemaker
from pyspark.sql.functions import lower, regexp_replace, col, concat_ws
from pyspark.ml.feature import Tokenizer, StopWordsRemover
from pyspark.sql.functions import length
from pyspark.ml.feature import StandardScaler
logging.basicConfig(format='%(asctime)s,%(levelname)s,%(module)s,%(filename)s,%(lineno)d,%(message)s', level=logging.DEBUG)
logger = logging.getLogger()
logger.setLevel(logging.DEBUG)
logger.addHandler(logging.StreamHandler(sys.stdout))
def main():
parser = argparse.ArgumentParser(description="app inputs and outputs")
parser.add_argument("--s3_dataset_path", type=str, help="Path of dataset in S3")
args = parser.parse_args()
spark = SparkSession.builder \
.appName("Spark ML")\
.config("spark.driver.memory","16G")\
.config("spark.driver.maxResultSize", "0") \
.config("spark.kryoserializer.buffer.max", "2000M")\
.config("spark.jars.packages", "com.johnsnowlabs.nlp:spark-nlp_2.12:5.1.3")\
.getOrCreate()
logger.info(f"Spark version: {spark.version}")
# This is needed to save RDDs which is the only way to write nested Dataframes into CSV format
sc = spark.sparkContext
sc._jsc.hadoopConfiguration().set(
"mapred.output.committer.class", "org.apache.hadoop.mapred.FileOutputCommitter"
)
# Downloading the data from S3 into a Dataframe
logger.info(f"going to read {args.s3_dataset_path}")
rescaledData = spark.read.parquet(args.s3_dataset_path, header=True)
train_data, test_data, val_data = rescaledData.randomSplit([0.8, 0.15, 0.05], seed=2224)
# Print the number of records in each dataset
logger.info("Number of training records: " + str(train_data.count()))
logger.info("Number of testing records: " + str(test_data.count()))
logger.info("Number of validation records: " + str(val_data.count()))
stringIndexer_over_18 = StringIndexer(inputCol="over_18", outputCol="over_18_ix")
stringIndexer_is_self = StringIndexer(inputCol="is_self", outputCol="is_self_ix")
stringIndexer_is_video = StringIndexer(inputCol="is_video", outputCol="is_video_ix")
stringIndexer_has_media = StringIndexer(inputCol="has_media", outputCol="has_media_ix")
stringIndexer_subreddit = StringIndexer(inputCol="subreddit", outputCol="subreddit_ix")
stringIndexer_emotion = StringIndexer(inputCol="emotion", outputCol="emotion_ix")
onehot_over_18 = OneHotEncoder(inputCol="over_18_ix", outputCol="over_18_vec")
onehot_is_self = OneHotEncoder(inputCol="is_self_ix", outputCol="is_self_vec")
onehot_is_video = OneHotEncoder(inputCol="is_video_ix", outputCol="is_video_vec")
onehot_has_media = OneHotEncoder(inputCol="has_media_ix", outputCol="has_media_vec")
onehot_subreddit = OneHotEncoder(inputCol="subreddit_ix", outputCol="subreddit_vec")
vectorAssembler_features = VectorAssembler(
inputCols=["over_18_vec", "is_self_vec", "is_video_vec",
"has_media_vec", "subreddit_vec", "num_comments",
"post_length", "emotion_ix","sentiment_score","hour_of_day", "day_of_week",
"day_of_month", "month", "year"],
outputCol="combined_features")
# Scale the features
scaler = StandardScaler(inputCol="combined_features", outputCol="scaled_features", withStd=True, withMean=False)
# Define the stages for the pipeline
stages = [
stringIndexer_subreddit,
stringIndexer_over_18,
stringIndexer_is_self,
stringIndexer_is_video,
stringIndexer_has_media,
stringIndexer_emotion,
onehot_over_18,
onehot_is_self,
onehot_is_video,
onehot_has_media,
onehot_subreddit,
vectorAssembler_features,
scaler
]
# Define the pipeline without the classifier and evaluator
pipeline = Pipeline(stages=stages)
# Fit the preprocessing part of the pipeline
pipeline_fit = pipeline.fit(train_data)
# Transform the data
transformed_train_data = pipeline_fit.transform(train_data)
transformed_test_data = pipeline_fit.transform(test_data)
transformed_train_data.write.parquet("s3a://project-group34/project/submissions/preprocessed_ML2/train/",mode="overwrite")
transformed_test_data.write.parquet("s3a://project-group34/project/submissions/preprocessed_ML2/test/",mode="overwrite")
if __name__ == "__main__":
main()
Overwriting ./code/preprocess_ml2.py
%%time
import time
import sagemaker
from sagemaker.spark.processing import PySparkProcessor
# Setup the PySpark processor to run the job. Note the instance type and instance count parameters. SageMaker will create these many instances of this type for the spark job.
role = sagemaker.get_execution_role()
spark_processor = PySparkProcessor(
base_job_name="sm-spark-project",
framework_version="3.3",
role=role,
instance_count=8,
instance_type="ml.m5.xlarge",
max_runtime_in_seconds=21600,
)
# s3 paths
session = sagemaker.Session()
output_prefix_logs = f"spark_logs"
configuration = [
{
"Classification": "spark-defaults",
"Properties": {"spark.executor.memory": "12g", "spark.executor.cores": "4"},
}
]
sagemaker.config INFO - Not applying SDK defaults from location: /etc/xdg/sagemaker/config.yaml sagemaker.config INFO - Not applying SDK defaults from location: /root/.config/sagemaker/config.yaml sagemaker.config INFO - Not applying SDK defaults from location: /etc/xdg/sagemaker/config.yaml sagemaker.config INFO - Not applying SDK defaults from location: /root/.config/sagemaker/config.yaml sagemaker.config INFO - Not applying SDK defaults from location: /etc/xdg/sagemaker/config.yaml sagemaker.config INFO - Not applying SDK defaults from location: /root/.config/sagemaker/config.yaml CPU times: user 91.4 ms, sys: 0 ns, total: 91.4 ms Wall time: 140 ms
%%time
bucket = "project-group34"
s3_path = "s3a://project-group34/project/submissions/ml_model2_cleaned/"
# run the job now, the arguments array is provided as command line to the Python script (Spark code in this case).
spark_processor.run(
submit_app="./code/preprocess_ml2.py",
arguments=[
"--s3_dataset_path",
s3_path,
],
spark_event_logs_s3_uri="s3://{}/{}/spark_event_logs".format(bucket, output_prefix_logs),
logs=False,
configuration=configuration
)
#to call preprocessing job
INFO:sagemaker:Creating processing-job with name sm-spark-project-2023-12-01-02-01-51-097
................................................................................................................!CPU times: user 426 ms, sys: 49 ms, total: 475 ms Wall time: 9min 29s
#model training job
%%writefile ./code/ml_train_LR.py
import sys
import os
import logging
import argparse
from pyspark.sql import SparkSession
from pyspark.ml.regression import LinearRegression
from pyspark.ml import Pipeline
import sagemaker
from pyspark.sql.functions import col, concat_ws, length
# Logging setup
logging.basicConfig(format='%(asctime)s,%(levelname)s,%(module)s,%(filename)s,%(lineno)d,%(message)s', level=logging.DEBUG)
logger = logging.getLogger()
logger.setLevel(logging.DEBUG)
logger.addHandler(logging.StreamHandler(sys.stdout))
def main():
# Build Spark session
spark = (SparkSession.builder
.appName("PySparkApp")
.config("spark.jars.packages", "org.apache.hadoop:hadoop-aws:3.2.2")
.config(
"fs.s3a.aws.credentials.provider",
"com.amazonaws.auth.ContainerCredentialsProvider")
.getOrCreate())
logger.info(f"Spark version: {spark.version}")
# Downloading data from S3 into a Dataframe
transformed_train_data = spark.read.parquet("s3a://project-group34/project/submissions/preprocessed_ML2/train/")
transformed_test_data = spark.read.parquet("s3a://project-group34/project/submissions/preprocessed_ML2/test/")
# Logistic Regression Classifier
lr_classifier = LinearRegression(labelCol="score", featuresCol="scaled_features")
# Pipeline
pipeline = Pipeline(stages=[lr_classifier])
# Fit the pipeline
pipeline_fit = pipeline.fit(transformed_train_data)
train_predictions = pipeline_fit.transform(transformed_train_data)
test_predictions = pipeline_fit.transform(transformed_test_data)
# Write predictions to S3
train_predictions.write.parquet("s3a://project-group34/project/submissions/LinearRegression/train_pred/", mode="overwrite")
test_predictions.write.parquet("s3a://project-group34/project/submissions/LinearRegression/test_pred/", mode="overwrite")
pipeline_fit.save("s3a://sk2224-project/project/submissions/LinearRegression/model3/")
logger.info(f"all done...")
if __name__ == "__main__":
main()
Overwriting ./code/ml_train_LR.py
%%time
bucket = "project-group34"
# run the job now, the arguments array is provided as command line to the Python script (Spark code in this case).
spark_processor.run(
submit_app="./code/ml_train_LR.py",
spark_event_logs_s3_uri="s3://{}/{}/spark_event_logs".format(bucket, output_prefix_logs),
logs=False,
configuration=configuration
)
#to call training job
INFO:sagemaker:Creating processing-job with name sm-spark-project-2023-12-01-02-32-28-298
...................................................................................................!CPU times: user 377 ms, sys: 49 ms, total: 426 ms Wall time: 8min 24s
import sagemaker
from pyspark.sql.functions import lower, regexp_replace, col, concat_ws
from pyspark.ml.feature import Tokenizer, StopWordsRemover
from sparknlp.annotator import *
from sparknlp.base import *
import sparknlp
from sparknlp.pretrained import PretrainedPipeline
from sparknlp.base import Finisher, DocumentAssembler
from pyspark.sql.functions import length
transformed_train = spark.read.parquet("s3a://project-group34/project/submissions/LinearRegression/train_pred/")
transformed_test = spark.read.parquet("s3a://project-group34/project/submissions/LinearRegression/test_pred/")
## Collect actual and predicted values
actuals = transformed_train.select('score').rdd.flatMap(lambda x: x).collect()
predictions = transformed_train.select('prediction').rdd.flatMap(lambda x: x).collect()
transformed_train.columns
['emotion', 'sentiment_score', 'subreddit', 'text', 'score', 'num_comments', 'over_18', 'is_self', 'is_video', 'post_length', 'hour_of_day', 'day_of_week', 'day_of_month', 'month', 'year', 'has_media', 'words', 'filtered_words', 'rawFeatures', 'features', 'subreddit_ix', 'over_18_ix', 'is_self_ix', 'is_video_ix', 'has_media_ix', 'emotion_ix', 'over_18_vec', 'is_self_vec', 'is_video_vec', 'has_media_vec', 'subreddit_vec', 'combined_features', 'scaled_features', 'prediction']
transformed_train.select('prediction').show()
+------------------+ | prediction| +------------------+ |-48.13094582052554| | -26.7806854150881| |10.194631749076962| |-85.23569633251418| | 578.484092933822| |192.64815892488969| |-51.02573646764813| | -57.300167060891| |23.960549312202147| | 6.523627513766769| |204.20209429128772| |-72.80758947557297| |-53.71251974003371| | 80.77190970339325| |-29.24441916961632| |339.24382786565184| |202.17728896076505| | -46.8308562559796| | 204.7750736454409| |-38.67414265397565| +------------------+ only showing top 20 rows
from pyspark.ml.feature import OneHotEncoder, StringIndexer, IndexToString, VectorAssembler
from pyspark.ml.classification import RandomForestClassifier, MultilayerPerceptronClassifier, GBTClassifier
from pyspark.ml.evaluation import BinaryClassificationEvaluator, MulticlassClassificationEvaluator, RegressionEvaluator
from pyspark.ml import Pipeline, Model
evaluator = RegressionEvaluator(labelCol="score", predictionCol="prediction", metricName="rmse")
rmse = evaluator.evaluate(transformed_train)
rmse
1351.7940211540695
evaluator = RegressionEvaluator(labelCol="score", predictionCol="prediction", metricName="rmse")
rmse = evaluator.evaluate(transformed_test)
rmse
1385.9713622497354
evaluator = RegressionEvaluator(labelCol="score", predictionCol="prediction", metricName="r2")
r2 = evaluator.evaluate(transformed_train)
r2
0.2532836368703225
evaluator = RegressionEvaluator(labelCol="score", predictionCol="prediction", metricName="r2")
r2 = evaluator.evaluate(transformed_test)
r2
0.288839039507672
%%writefile ./code/ml_train_RFR.py
import sys
import os
import logging
import argparse
from pyspark.sql import SparkSession
from pyspark.ml.regression import LinearRegression, DecisionTreeRegressor
from pyspark.ml import Pipeline
import sagemaker
from pyspark.sql.functions import col, concat_ws, length
from pyspark.ml.feature import StandardScaler
# Logging setup
logging.basicConfig(format='%(asctime)s,%(levelname)s,%(module)s,%(filename)s,%(lineno)d,%(message)s', level=logging.DEBUG)
logger = logging.getLogger()
logger.setLevel(logging.DEBUG)
logger.addHandler(logging.StreamHandler(sys.stdout))
def main():
# Build Spark session
spark = (SparkSession.builder
.appName("PySparkApp")
.config("spark.jars.packages", "org.apache.hadoop:hadoop-aws:3.2.2")
.config(
"fs.s3a.aws.credentials.provider",
"com.amazonaws.auth.ContainerCredentialsProvider")
.getOrCreate())
logger.info(f"Spark version: {spark.version}")
# Downloading data from S3 into a Dataframe
transformed_train_data = spark.read.parquet("s3a://project-group34/project/submissions/preprocessed_ML2/train/")
transformed_test_data = spark.read.parquet("s3a://project-group34/project/submissions/preprocessed_ML2/test/")
# Regressor model
rf_reg = DecisionTreeRegressor(labelCol="score", featuresCol="scaled_features")
# Pipeline
pipeline = Pipeline(stages=[rf_reg])
# Fit the pipeline
pipeline_fit = pipeline.fit(transformed_train_data)
train_predictions = pipeline_fit.transform(transformed_train_data)
test_predictions = pipeline_fit.transform(transformed_test_data)
# Write predictions to S3
train_predictions.write.parquet("s3a://project-group34/project/submissions/RFRegression/train_pred/", mode="overwrite")
test_predictions.write.parquet("s3a://project-group34/project/submissions/RFRegression/test_pred/", mode="overwrite")
pipeline_fit.save("s3a://project-group34/project/submissions/RFRegression/model3/")
logger.info(f"all done...")
if __name__ == "__main__":
main()
Overwriting ./code/ml_train_RFR.py
%%time
bucket = "project-group34"
# run the job now, the arguments array is provided as command line to the Python script (Spark code in this case).
spark_processor.run(
submit_app="./code/ml_train_RFR.py",
spark_event_logs_s3_uri="s3://{}/{}/spark_event_logs".format(bucket, output_prefix_logs),
logs=False,
configuration=configuration
)
INFO:sagemaker:Creating processing-job with name sm-spark-project-2023-12-01-03-01-24-931
...................................................................................................!CPU times: user 375 ms, sys: 56.1 ms, total: 431 ms Wall time: 8min 24s
import sagemaker
from pyspark.sql.functions import lower, regexp_replace, col, concat_ws
from pyspark.ml.feature import Tokenizer, StopWordsRemover
from sparknlp.annotator import *
from sparknlp.base import *
import sparknlp
from sparknlp.pretrained import PretrainedPipeline
from sparknlp.base import Finisher, DocumentAssembler
from pyspark.sql.functions import length
transformed_train = spark.read.parquet("s3a://project-group34/project/submissions/RFRegression/train_pred/")
transformed_test = spark.read.parquet("s3a://project-group34/project/submissions/RFRegression/test_pred/")
transformed_train.columns
['emotion', 'sentiment_score', 'subreddit', 'text', 'score', 'num_comments', 'over_18', 'is_self', 'is_video', 'post_length', 'hour_of_day', 'day_of_week', 'day_of_month', 'month', 'year', 'has_media', 'words', 'filtered_words', 'rawFeatures', 'features', 'subreddit_ix', 'over_18_ix', 'is_self_ix', 'is_video_ix', 'has_media_ix', 'emotion_ix', 'over_18_vec', 'is_self_vec', 'is_video_vec', 'has_media_vec', 'subreddit_vec', 'combined_features', 'scaled_features', 'prediction']
transformed_train.select('score').show()
+-----+ |score| +-----+ | 1| | 1| | 0| | 0| | 643| | 1| | 1| | 0| | 0| | 0| | 1| | 0| | 0| | 9| | 1| | 0| | 1| | 0| | 3| | 3| +-----+ only showing top 20 rows
transformed_train.select('prediction').show()
+------------------+ | prediction| +------------------+ |1.3763346285579887| |1.3763346285579887| |5.2809785841760855| |1.3763346285579887| |2737.1954545454546| |1.3763346285579887| |1.3763346285579887| |5.2809785841760855| |20.441544004117343| | 5.445779809283631| |1.3763346285579887| |1.3763346285579887| |5.2809785841760855| |54.933394160583944| |1.3763346285579887| | 5.445779809283631| |1.3763346285579887| | 5.445779809283631| | 5.445779809283631| | 5.445779809283631| +------------------+ only showing top 20 rows
from pyspark.ml.feature import OneHotEncoder, StringIndexer, IndexToString, VectorAssembler
from pyspark.ml.classification import RandomForestClassifier, MultilayerPerceptronClassifier, GBTClassifier
from pyspark.ml.evaluation import BinaryClassificationEvaluator, MulticlassClassificationEvaluator, RegressionEvaluator
from pyspark.ml import Pipeline, Model
evaluator = RegressionEvaluator(labelCol="score", predictionCol="prediction", metricName="rmse")
rmse = evaluator.evaluate(transformed_train)
rmse
1324.6050027967776
evaluator = RegressionEvaluator(labelCol="score", predictionCol="prediction", metricName="rmse")
rmse = evaluator.evaluate(transformed_test)
rmse
1447.3953477370387
from pyspark.sql.functions import col, min, max
df = transformed_train.agg(
min(col("score")).alias("Min Target"),
max(col("score")).alias("Max Target")
)
df.show()
[Stage 52:==============================================> (4 + 1) / 5]
+----------+----------+ |Min Target|Max Target| +----------+----------+ | 0| 282232| +----------+----------+
evaluator = RegressionEvaluator(labelCol="score", predictionCol="prediction", metricName="r2")
r2_dt = evaluator.evaluate(transformed_train)
r2_dt
0.2830193950674207
evaluator = RegressionEvaluator(labelCol="score", predictionCol="prediction", metricName="r2")
r2_dt = evaluator.evaluate(transformed_test)
r2_dt
0.22440725296383934
import matplotlib.pyplot as plt
from pyspark.sql.functions import col
# dT_data = transformed_train.select("score", "prediction").sample(False, 0.1).collect()
# Separate actual and predicted values
actuals = [row['score'] for row in dT_data]
predictions = [row['prediction'] for row in dT_data]
# Collect actual and predicted values
actuals = transformed_train.select('score').rdd.flatMap(lambda x: x).collect()
predictions = transformed_train.select('prediction').rdd.flatMap(lambda x: x).collect()
min_axis_value = 0
max_axis_value = 20000
# Create the scatter plot
plt.scatter(actuals, predictions, alpha=0.5)
plt.xlabel('Actual Values')
plt.ylabel('Predicted Values')
plt.title('Actual vs Predicted values for Decision Tree Classifier')
plt.plot([min_axis_value, max_axis_value], [min_axis_value, max_axis_value], 'r') # Diagonal line
# Set the limits for x and y axes
plt.xlim(min_axis_value, max_axis_value)
plt.ylim(min_axis_value, max_axis_value)
plt.savefig('regression_plot.png',dpi = 300)
plt.show()